Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Interfaces ; 53(1):9, 2023.
Article in English | ProQuest Central | ID: covidwho-2251432

ABSTRACT

During the COVID-19 crisis, the Chilean Ministry of Health and the Ministry of Sciences, Technology, Knowledge and Innovation partnered with the Instituto Sistemas Complejos de Ingeniería (ISCI) and the telecommunications company ENTEL, to develop innovative methodologies and tools that placed operations research (OR) and analytics at the forefront of the battle against the pandemic. These innovations have been used in key decision aspects that helped shape a comprehensive strategy against the virus, including tools that (1) provided data on the actual effects of lockdowns in different municipalities and over time;(2) helped allocate limited intensive care unit (ICU) capacity;(3) significantly increased the testing capacity and provided on-the-ground strategies for active screening of asymptomatic cases;and (4) implemented a nationwide serology surveillance program that significantly influenced Chile's decisions regarding vaccine booster doses and that also provided information of global relevance. Significant challenges during the execution of the project included the coordination of large teams of engineers, data scientists, and healthcare professionals in the field;the effective communication of information to the population;and the handling and use of sensitive data. The initiatives generated significant press coverage and, by providing scientific evidence supporting the decision making behind the Chilean strategy to address the pandemic, they helped provide transparency and objectivity to decision makers and the general population. According to highly conservative estimates, the number of lives saved by all the initiatives combined is close to 3,000, equivalent to more than 5% of the total death toll in Chile associated with the pandemic until January 2022. The saved resources associated with testing, ICU beds, and working days amount to more than 300 million USD.

2.
Health Care Manag Sci ; 25(1): 146-165, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1375662

ABSTRACT

During the current COVID-19 pandemic, active testing has risen as a key component of many response strategies around the globe. Such strategies have a common denominator: the limited availability of diagnostic tests. In this context, pool testing strategies have emerged as a means to increase testing capacity. The efficiency gains obtained by using pool testing, derived from testing combined samples simultaneously, vary according to the spread of the SARS-CoV-2 virus in the population being tested. Motivated by the need for testing closed populations, such as long-term care facilities (LTCFs), where significant correlation in infections is expected, we develop a probabilistic model for settings where the test results are correlated, which we use to compute optimal pool sizes in the context of two-stage pool testing schemes. The proposed model incorporates the specificity and sensitivity of the test, which makes it possible to study the impact of these measures on both the expected number of tests required for diagnosing a population and the expected number and variance of false negatives. We use our experience implementing pool testing in LTCFs managed by SENAMA (Chile's National Service for the Elderly) to develop a simulation model of contagion dynamics inside LTCFs, which incorporates testing and quarantine policies implemented by SENAMA. We use this simulation to estimate the correlation of test results among collected samples when following SENAMA's testing guidelines. Our results show that correlation estimates are high in settings representative of LTCFs, which validates the use of the proposed model for incorporating correlation in determining optimal pool sizes for pool testing strategies. Generally, our results show that settings in which pool testing achieves efficiency gains, relative to individual testing, are likely to be found in practice. Moreover, the results show that incorporating correlation in the analysis of pool testing strategies both improves the expected efficiency and broadens the settings in which the technique is preferred over individual testing.


Subject(s)
COVID-19 , Aged , COVID-19/diagnosis , Humans , Models, Statistical , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL